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We present a general method to study the nonequilibrium behavior of Casimir-type fluctuation-induced
forces for classical free scalar field theories. In particular, we analyze the temporal evolution of the force
toward its equilibrium value when the field dynamics is given by a general class of overdamped stochastic
dynamics �including the model A and model B classes�. The steady-state force is also analyzed for systems
which have nonequilibrium steady states, for instance, where they are driven by colored noise. The key to the
method is that the out of equilibrium force is computed by specifying an energy of interaction between the field
and the surfaces in the problem. In general, we find that there is a mapping of the dynamical problem onto a
corresponding static one and in the case where the latter can be solved, the full dynamical behavior of the force
can be extracted. The method is used to compute the nonequilibrium Casimir force induced between two
parallel plates by a fluctuating field, in the cases of Dirichlet, Neumann, and mixed boundary conditions.
Various other examples, such as the fluctuation-induced force between inclusions in fluctuating media, are
discussed.
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I. INTRODUCTION

The Casimir effect arises when the fluctuations of a quan-
tum field is modified by the presence of surfaces or objects
placed in the field �1–5�. A so-called pseudo- or critical Ca-
simir force can also arise for classical fields in the presence
of thermal fluctuations, and although the physical origin of
this pseudo-Casimir force is quite different to the quantum
Casimir effect, the two forces have a similar origin from a
mathematical standpoint. The terminology used to describe
these types of Casimir forces varies considerably in the lit-
erature. We will be interested in the classical, nonquantum
�or zero Matsubara frequency� Casimir interaction which is
dominant at high temperatures and large separations between
interacting surfaces. The interaction arises in the context of a
statistical field theory rather than a quantum field theory and
is often referred to as the thermal Casimir effect as in this
regime the force is proportional to the temperature. When the
statistical field theory describes a critical point, then one can
talk precisely of a critical Casimir effect. However, even
away from a critical point, a Casimir-type interaction occurs,
but this interaction is screened rather being long range. The
interaction induced between surfaces or objects can be con-
sidered to be due to the imposition of boundary conditions
on the field or due to an energy of interaction with the field.
The simplest system where the thermal Casimir �or pseudo-
Casimir� effect arises is the free scalar field theory and long-
range Casimir forces arise when the field theory is massless,
i.e., where the Hamiltonian of the system is given by

H =
1

2
� dx����x��2. �1�

The above field theory is purely classical and is, for instance,
a simple model for the elastic energy of a surface if the field
� represents the height of the surface. If one specifies the
boundary conditions for the field on two plates �e.g., Dirich-

let, Neumann, or Robin�, the equilibrium thermal Casimir
interaction between the plates can be computed from the free
energy �2,3�. The fluctuating field � also describes the order
parameter for critical systems, such as binary liquids at the
critical point �6�, and the occurrence of such a critical Ca-
simir interaction has recently been confirmed experimentally
�7�. The effect of the Casimir force on the wetting and thin-
ning of 4He and 4He-3He mixtures has also been extensively
studied, theoretically �8,9�, numerically �10,11�, and experi-
mentally �12,13�. A recent review of results on the critical
Casimir force can be found in �14�. Also, the field � can
represent the phase of the complex-order parameter in a su-
perfluid state, such as that occurring for 4He �15�, giving an
additional contribution to the Casmir-like forces in wetting
films of 4He. We note that in general, critical systems are
described by interacting field theories; the approach in this
paper only applies to free field theories and can only be
applied to interacting field theories as a Gaussian approxima-
tion. Free vectorial field theories describing liquid crystal
systems also exhibit Casimir-type interactions between the
surfaces confining the system �16�. In what follows, we will
study classical field theories where the dynamics of the fields
are driven by thermal fluctuations or other stochastic noise,
i.e., we will consider a range of dissipative dynamics for the
system. For brevity, we shall refer to the forces as Casimir
forces rather than pseudo-Casimir or critical Casimir forces
and at no point will we consider quantum effects.

When classical fields are out of thermal equilibrium, one
expects significant changes in the Casimir forces from those
computed at equilibrium. One of the principal problems
when analyzing the out of equilibrium Casimir effect, say for
parallel plates, is to obtain an expression for the force be-
tween the two plates which is valid out of equilibrium. In
previous studies, the stress tensor has been used to study
both the dynamical behavior of the force �17–19� and the
force fluctuations in equilibrium �21�. However, only the
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force in equilibrium can be strictly computed using the stress
tensor �see the later discussion�, therefore there is no general
proof that the stress tensor can be used to compute forces out
of equilibrium for general dissipative dynamics. Results us-
ing the stress tensor may, however, be reliable for situations
close to equilibrium �19,20�. For the quantum Casimir inter-
action the field dynamics is Lagrangian and progress is being
made on its out of equilibrium behavior �5�. Another ap-
proach to compute out of equilibrium Casimir forces is to
construct a model with a specified nonequilibrium dynamics
and to specify by hand the force at the wall. For example, in
�22,23�, the dynamical field was related to a particle density
and the local pressure on the wall is then given by the ideal
gas form via kinetic reasoning. We note that in a number of
papers, where the stress tensor is used out of equilibrium or
where kinetic arguments are used to compute the force in
parallel-plate geometries, it has been found that the forces
exerted on the plates are not equal and opposite. In some of
these works �21,22�, this fact is interpreted as a violation of
the Newton action reaction principle. Given these intriguing
and interesting results, it is therefore useful to develop an
analysis where we can write down the instantaneous force on
the plates or surfaces in terms of the unaveraged field vari-
ables without making any further assumptions to evaluate the
force.

To achieve this goal, in this paper, rather than imposing
boundary conditions on the field, we specify its energy of
interaction with the surfaces in the system �for the static
problem, see �24�, for example�. In this way, we can write
down the instantaneous force on the wall unambiguously as
all forces in the problem are generated by a potential. Re-
cently, a variant of this approach was also applied to com-
pute dynamical drag forces in fluctuating classical fields
�26�. This paper presents the full details of the calculations
presented in an earlier letter �25� and in addition clarifies
how our formalism for computing the force is related to the
stress tensor. We also discuss the out of equilibrium force
between plates with mixed boundary conditions for parallel
plane geometries. By using the pairwise approximation, we
also show how this method can be applied to compute the
out of equilibrium fluctuation-induced force between small
inclusions in fluctuating media.

II. GENERAL FORMALISM

A. Energetic formulation of the boundary interaction

We commence by considering the most general case of a
free-field theory where the Hamiltonian can be written in
terms of a general quadratic Hamiltonian �27�

H =
1

2
� dxdx���x���x,x�,l���x�� , �2�

where � is a self-adjoint operator, i.e., ��x ,x��=��x� ,x�.
Here, l represents any suitable free parameter in the problem
but for concreteness, it could be the position of a plate which
interacts with the field. For instance, one could choose

��x,x�,l� = − �� · ��z,l� � − ��z�c1 − ��z − l�c2���x − x�� ,

�3�

where when c1 and c2 are positive, this corresponds to a
free-field theory where the fluctuations of the field � are
suppressed on two plates: one at z=0 and the other at z= l.
The term ��z , l� is a spatially varying elastic constant for the
field, for instance, one could have one value within the two
plates and another outside. The induced boundary conditions
for this theory at each plate are of the Robin form

��0+,l�� ��

�z
�

0+
− ��0−,l�� ��

�z
�

0−
= c1��0� , �4�

at z=0, and

��l+,l�� ��

�z
�

l+
− ��l−,l�� ��

�z
�

l−
= c2��l� , �5�

at z= l and where the superscripts x� indicate being infini-
tesimally to the right and left of the point x. Clearly, when �
is constant and in the limit where c→�, one will obtain
Dirichlet boundary conditions on the two plates. The instan-
taneous generalized force acting on the plate at z= l is thus
given by

Fl = −
�H

�l
= −

1

2
� dxdx���x�

�

�l
��x,x�,l���x�� . �6�

This is the strict definition as defined by the principle of
virtual work. It is valid for any configuration of the field �
and position of the interacting surface or object. Clearly sim-
ply that the potential energy of a physical system is described
by a potential V�x� then the instantaneous force in the direc-
tion i for any configuration of the coordinates

f i = −
�V

�xi
.

We are thus simply applying this result to functional poten-
tial energies. The equilibrium value of this force is can also
be written in the familiar form

�Fl� = T
�

�l
ln�Z���� , �7�

where

Z��� =� d���exp�− �H���� , �8�

with H as defined in Eq. �2� and where �=1 /T is the inverse
temperature. Alternatively, the force can be expressed using
Eq. �6� to obtain

�Fl� = −
T

2
� dxdx�	 �

�l
��x,x�,l�
�−1�x,x�,l� , �9�

where we have simply used the fact that the static correlation
function is given by

���x���x��� = T�−1�x,x�� . �10�
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Before using the above idea to compute the Casimir force
out of equilibrium, we will briefly show how the energetic
formulation can be used to derive the standard expression for
the average value of the force at thermal equilibrium. This is
a useful exercise as it shows that our method recovers the
stress tensor result in equilibrium and it is also a useful re-
minder as to when the use of the stress tensor is valid. The
more traditional derivation in the context of quantum field
theory can be found, for example, in �28�.

Consider the Hamiltonian of a scalar field theory H with
Hamiltonian density H such that

H =� dxH �11�

and where the Hamiltonian density consists of a bulk part
denoted by H0 and an interaction term with a surface S de-
noted by HS,

H = H0 + HS. �12�

Here we assume that H0 has a standard quadratic kinetic term
����2 plus an interacting term depending only on �. For
instance, if the surface is perpendicular to the direction i and
is at xi= li, then we can write

HS = ��xi − li�V��� . �13�

The force on the surface in the direction i is then given by

Fi = −
�H

�li
= −� dx

�H
�li

= − �
VS

dx
�H
�li

, �14�

where the volume VS in the last integral represents any vol-
ume �which can be infinitesimally small� containing the sur-
face. This is because of the localized nature of the surface
interaction given in Eq. �13�.

In order to make the connection between our energetic
formalism and the stress tensor, we compute the derivative of
the Hamiltonian density H in the direction i which can be
written as

�iH =
�H
��

�i� +
�H

�� j�
� j�i� −

�H
�li

. �15�

We can now use this in Eq. �14� to give

Fi = �
VS

dx	�iH −
�H
��

�i� −
�H

�� j�
� j�i�
 . �16�

Now integrating the last term by parts, we find that

Fi = �
VS

dx��iH − � j� �H
�� j�

�i�
− 	 �H

��
− � j� �H

�� j�

�i�� . �17�

This can now be written as

Fi = �
VS

dx� jTij − �
VS

dx	 �H
��

− � j� �H
�� j�


�i� , �18�

where

Tij = �ijH − � j�
�H

��i�
�19�

is the standard stress tensor. We see that in general, there is
an additional term in the general force given by the second
integral above but which clearly must be zero in equilibrium.
To see how this vanishes at equilibrium, we note that the
argument of the second integral above is in fact the func-
tional derivative of the Hamiltonian H, i.e.,

�H
��

− � j� �H
�� j�

 =
�H

��
. �20�

Note that in equilibrium, the classical field obeys �H /��
=0. However, strictly speaking, to show the vanishing of the
second integral in equilibrium, we use the Schwinger-Dyson
equation

� d���
�

���x�
���y�exp�− �H�� = 0 �21�

as the functional integral is an exact derivative. This can now
be rearranged to give

���y�
�H

���x�� =
1

�
��x − y� , �22�

where the angle brackets indicate averaging with respect to
the Gibbs-Boltzmann weight exp�−�H�. This then gives

���yi
��y�

�H

���x���x=y
=

1

�
�i��0� = 0, �23�

where the last step can be justified by thinking of the Dirac
delta function as the limit of a Gaussian. We thus recover the
equilibrium result

�Fi� =��
VS

dx� jTij� =��
S

TijdSj� . �24�

B. Dynamics

We now consider the dynamical problem where the sys-
tem is prepared in a state �=0 at the time t=0 �this could
have been by cooling the system to a very low temperature,
for instance� and then letting it relax at some nonzero tem-
perature T. We will consider case of a general relaxational
dynamics, where the evolution of the field is given by

���x�
�t

= −� dx�R�x,x��
�H

���x��
+ ��x,t�

= −� dx�R��x,x����x�� + ��x,t� , �25�

where R� indicates the composed operator R��x ,x��
=�dyR�x ,y���y ,x��. To satisfy detailed balance with noise
that is uncorrelated in time, we chose the noise correlation to
be

���x,t���x�,t��� = 2T��t − t��R�x,x�� . �26�

For the case where R�x ,x��=��x−x��, we recover
the case of nonconserved model A dynamics and when
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R�x ,x��=−�2��x−x��, we have the case of conserved model
B dynamics. In what follows, the calculation is valid for any
self-adjoint operator R.

The formal solution to this equation, for flat initial con-
figuration of the field, is

��x,t� = �
0

t

dsdy exp�− �t − s�R���x,y���y,s� . �27�

This means that the equal-time-correlation function of the
field is given by, in explicit nonoperator notation,

���x,t���x�,t�� = C�x,x�,t�

= 2T�
0

t

dsdydy� exp�− �t − s�R���x,y�

	exp�− �t − s�R���x�,y��R�y,y�� . �28�

Now we use the fact that the operators � and R are self-
adjoint to write

exp�− �t − s�R���x� · y�� = exp�− �t − s��R��y�,x�� .

�29�

This thus enables us to write in operator notation that

C�t� = 2T�
0

t

ds exp�− �t − s�R��R exp�− �t − s��R� .

�30�

Now if we expand the exponential operators in the integral,
we find

exp�− �t − s�R��R exp�− �t − s��R�

= �
n,m

1

n!m!
�− �t − s��m+n�R��nR��R�m

= �
n,m

1

n!m!
�− �t − s��m+nR��R�n��R�m

= R exp�− �t − s�2�R� . �31�

The time integration can now be carried out to yield

C�t� = T�−1�1 − exp�− 2t�R�� . �32�

Now if we Laplace transform this equation �defining Lf�s�
=�0

�dt exp�−st�f�t��, we find that

LC�s� =
T

s
	� +

sR−1

2

−1

. �33�

Now using this and Eq. �6�, we find that the Laplace
transform for the average value generalized force is given by

�LFl�s�� = −
T

2s
� dxdx�	 �

�l
��x,x�,l�
	� +

sR−1

2

−1

�x,x�� .

�34�

However, as R does not depend on l, we may write

�LFl�s�� = −
T

2s
� dxdx�	 �

�l
�� +

sR−1

2

�x,x��

		� +
sR−1

2

−1

�x,x�� . �35�

Now using the equivalence between using Eqs. �7� and
�9�, we may write

�LFl�s�� =
T

s

�

�l
ln�Z��s�� , �36�

where the operator �s is given by

�s = � +
s

2
R−1. �37�

This result is quite remarkable—it means that the Laplace
transform of the time-dependent Casimir force considered
here is given by a static Casimir force for another free field
theory. It is clear that the result is also valid for the force on
any surface in the system which interacts with the field. Pro-
vided the static partition function is known for the corre-
sponding static problem, the corresponding time-dependent
force can be extracted by inverting the Laplace transform. If
one takes the limit s→0 in Eq. �36�, we find that the static
result is recovered from the pole at s=0 �29�.

III. MODEL A DYNAMICS

In this section, we will analyze the case of model A dy-
namics, i.e., where the dynamical operator R�x−x��=��x
−x��. This is the easiest case to analyze and it is the case that
has been most studied in the literature via the other ap-
proaches mentioned in Sec. I.

A. Parallel plate geometries

We now first turn to the case where the imposed boundary
conditions are Dirichlet �DD� and the two plates are im-
mersed in the fluctuating medium �hence, there is fluctuating
medium on both sides of each plate�. We take the total length
of the system to be L which is fixed and place the plates of
area A a distance l apart. Standard results on the screened
Casimir interaction �3,4,30� give

�LFl�s�� = −
2AT

s�4
��d−1�/2��d − 1

2
 I�l,s� , �38�

where d is the dimension of the space, A is the area of the
plates, and

I�l,s� =� kd−2dk

�k2 +
s

2
exp�− 2l�k2 +

s

2


1 − exp�− 2l�k2 +
s

2
 . �39�

The equilibrium behavior is easily extracted by examining
the pole at s=0 which yields, as anticipated, the standard
equilibrium Casimir force
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�Fl�eq = −
AT��d���d�

�16
��d−1�/2��d − 1

2
ld

, �40�

where � is Euler’s gamma function and � is the Riemann
zeta function �31�

��d� = �
n=1

�
1

nd . �41�

The full time dependence of the force, starting at zero at
t=0 and relaxing to the equilibrium value above, can be
extracted by direct Laplace inversion of Eq. �38�. Figure 1
shows the approach to equilibrium for three different plate
separations. Clearly, the relaxation times increase with plate
separation and this is due to the fact that the underlying
dynamics is diffusive and hence l2 sets a time scale. This is
also clearly evident in Fig. 2 that shows the collapsed res-

caled force curves obtained by plotting with the time units
rescaled by l2.

Useful analytic expressions for the early and late time
behaviors of the nonequilibrium force can also be obtained
from Eq. �38�. Because of the technical nature of their deri-
vation, they are relegated to the Appendix. We find that the
temporal derivative of the out of equilibrium force is given
by

� dFl

dt
� = −

2AT

�8
�d/2t�d−1�/2
�

�t
�
n=1

�
1
�t

exp�−
l2n2

2t
 . �42�

The above expression may also be written in the form

� dFl

dt
� = −

AT

2�8
�d/2t�d+2�/2 +
AT

2�8
��d−1�/2t�d+1�/2

	
�

�l	�
n=1

�

exp�−
2
2n2t

l2 
 . �43�

Clearly because the underlying dynamics is diffusive, l2 sets
a time scale. The short-term behavior of the force, t / l21,
can be obtained directly from Eq. �42� and is given by

�Fl�t�� � −
2AT

�8
t�d/2exp�−
l2

2t
 . �44�

The long-time asymptotics, t / l2�1, follow directly from Eq.
�43� and are given by

�Fl� � �Fl�eq +
AT

d�8
�d/2td/2 . �45�

An interesting thing about Eq. �43� is that one sees explicitly
the appearance of the eigenvalues for Dirichlet boundary
conditions in the sum on the right-hand side. The first term
can be seen to be due to the bulk on the exterior of the
system. This can shown be by taking the limit ł→� and
expressing the sum as a Riemann integral gives the left-hand
side to be equal to zero, i.e., as one would expect there is no
force. Of course, for a system where l→�, the system is
always out of equilibrium.

The agreement between our asymptotic expressions and
exact results obtained by numerical inversion of Eq. �38� is
shown in Fig. 2. As mentioned above, the late time correc-
tion is independent of l. This is because the medium between
the two plates has a relaxation time ��l�� l2 /2
2, whereas
the slowest relaxation times in the system are associated with
the medium outside the two plates and hence at late times the
correction is dominated by the relaxation of the external sys-
tem in the thermodynamic limit L→�. This diffusive relax-
ation is responsible for the power-law approach to equilib-
rium. The above result is also valid for Neumann-Neumann
�NN� boundary conditions as the static screened problems
have the same force for both DD and NN boundary condi-
tions. We note that this problem has been studied in �20�
assuming that the stress tensor can be used to compute the
force out of equilibrium. Our results for DD boundary con-
ditions agree with that given by the stress tensor, though no
explicit formula for the force is given in �20�. We are able to
show that this should give the same result for the force �see
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0.4

0.6
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1.2

t

F
/F
e
q

FIG. 1. �Color online� For Dirichlet-Dirichlet boundary condi-
tions, the approach to equilibrium for various values of the plate
separation l �top to bottom l=1,2 ,4� for d=3. Nonequilibrium Ca-
simir force F, obtained by the direct numerical inverse Laplace
transform of Eq. �38�, plotted in units of the equilibrium Casimir
force �Feq� as a function of time.
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FIG. 2. �Color online� Nonequilibrium Casimir force, F, in units
of the equilibrium Casimir force �Feq� at late times and early times
�inset� for d=3. Symbols were obtained by numerical inverse
Laplace transform of Eq. �38�. Each plot has only one set of sym-
bols because curves for different l values collapse. Dashed lines are
the corresponding approximations from Eqs. �44� and �45�.
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later�. Indeed, the numerical curve given for the DD case in
�20� closely resembles ours in Fig. 1 and the asymptotic form
of the late time decay to the equilibrium force agrees with
ours. It is also clear that within this energetic formulation
that the force on the two planes, for any boundary condi-
tions, is equal and opposite as it is given via the equilibrium
force of another free field theory. In �20�, the difference be-
tween the DD and NN boundary conditions can be seen to be
due to the presence, for NN boundary conditions, of the zero
�constant� mode in the z direction �perpendicular to the
plates� in the computation using the stress tensor. This is the
only difference between the two results. However, it is not
clear to us how the zero mode can influence the force as it
does not see �i.e., it is not effected by� the NN boundary
conditions.

To see whether, in general, a stress tensor computation
agrees with our result, we can exploit the fact that the right-
hand side of Eq. �36� is for an equilibrium force derived
from the Hamiltonian

Hst =� dxHst, �46�

where the subscript st is to make clear that the static or
equilibrium measure with Hamiltonian �46� is used to com-
pute observables. Now, away from �but still possibly infini-
tesimally close to� the boundary, the energy density is given
by

Hst =
1

2
����2 +

s

4
�2. �47�

The stress tensor for this theory is given by

Tij�s� = �ijHst − � j�
�Hst

��i�
�48�

=
�ij

2
�����2 +

s

2
�2 − �i�� j� �49�

and the average force on any volume V is given by the av-
erage of integral over the bounding surface S of this stress
tensor

�Fi�s��st =��
S

Tij�s�dSj�
st

. �50�

The Laplace transform of the force on the plates is thus given
from Eq. �36� by

�LFl�s��dy =
1

s��S

Tij�s�dSj�
st

, �51�

where, to avoid possible confusion, the subscript dy indicates
averaging over the noise for the dynamical problem and S
indicates the surface of the plates. However, we can now use
the relation Eq. �33� to write

L„���x,t���x�,t��dy…�s� =
1

s
���x���x���st �52�

and we may thus write

�Tij�s��st =
�ij

2
�L������2�dy��s� +

s

2
L���2�dy��s��

− L���i�� j��dy��s� . �53�

Now, we use the fact that if ��x ,0�=0, then
���x ,0���x� ,0��dy =0 and thus

s

2
L���2�dy��s� =

1

2
L�� �

�t
�2�

dy
�s� . �54�

The inverse Laplace transform of the static stress tensor
Tij�s� can thus be treated as an effective dynamical stress
tensor

�Tij
dy�t��dy = L−1�Tij�s��st�t� , �55�

with

Tij
dy�t� =

�ij

2
�����2 +

1

2

��2

�t
 − �i�� j� �56�

and � the dynamical field. Therefore, computing forces with
this dynamical stress tensor will give the same forces as
those given via our boundary energy derivation. Let us em-
phasize here that the effective dynamical stress tensor written
here is by no means a universal one. It depends on the pre-
cise dynamics of the system and the choice of initial condi-
tions.

We see immediately from Eq. �56� that at late times the
average value of the time derivative term will go to zero and
we will recover the standard form of the stress tensor. We
also see that when computing the force on a plate with Di-
richlet boundary conditions, the temporal derivative does not
contribute as � is zero at the surface. This is why the results
of �20� agree with ours for DD boundary conditions.

In the case of NN boundary conditions, it can be shown
that the temporal derivative term cancels out the contribution
from the zero mode and thus gives exactly the same force as
for DD boundary conditions. Similarly for DN boundary
conditions, this temporal derivative term ensures that the
force at the D boundary is equal in magnitude but opposite to
that at the N boundary. This is in contradiction with the
corresponding result given in �20� where the forces at the
boundaries are not equal and opposite.

In the case of DN boundary conditions, the screened static
result is

�LFl�s�� = −
2AT

s�4
��d−1�/2��d − 1

2
 I�l,s� , �57�

but here

I�l,s� = −� kd−2dk

�k2 +
s

2
exp�− 2l�k2 +

s

2


1 + exp�− 2l�k2 +
s

2
 . �58�

The equilibrium behavior is easily extracted by examining
the pole at s=0 which yields, as anticipated, the standard
equilibrium Casimir force for DN boundary conditions
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�Fl�eq =
AT��d����d�

�16
��d−1�/2��d − 1

2
ld

, �59�

where �31�

���d� = �
n=1

�
�− 1�n−1

nd = �1 − 21−d���d� �60�

is positive for d�1 and so the force in this case is repulsive.
Exactly the same analysis as that given above can be applied
to give

� dFl

dt
� =

2AT

�8
�d/2t�d−1�/2
�

�t
�
n=1

�
1
�t

�− 1�n−1exp�−
l2n2

2t
 .

�61�

From this, we obtain immediately the short-time asymptotic
behavior of the force

�Fl�t�� �
2AT

�8
t�d/2exp�−
l2

2t
 . �62�

We see that it is thus opposite of the case of DD and NN
boundary conditions. The large-time asymptotic behavior of
the force can also be extracted by using another form of the
Poisson summation formula, namely,

1 + 2�
n=1

�

�− 1�nexp�−
l2n2

2t


=
�2
t

l 	 �
n=−�

�

exp�−
2
2�n + 1

2 �2t

l2 
 , �63�

which in the late time limit gives

�
n=1

�

�− 1�n−1exp�−
l2n2

2t
 �

1

2
�64�

and thus

� dFl

dt
� = −

AT

2�8
�d/2t�d+2�/2 , �65�

and hence

�Fl� � �Fl�eq +
AT

d�8
�d/2td/2 . �66�

Therefore, we see that the time correction to the equilib-
rium result for DN boundary conditions is exactly the same
as that for the DD and NN cases. However, this means that
the intermediate force must overshoot its equilibrium value.
Figure 3 shows the full time-dependent approach to equilib-
rium for three different plate separations obtained by direct
numerical inversion of Eq. �57�. The overshoots at interme-
diate times are clearly visible. This agrees with the result of
�20� for the force calculated at the Dirichlet wall as it should
from our arguments above stating that one can, as was done
in �20�, use the usual expression for the stress tensor at the
plate with Dirichlet boundary conditions. This overshoot

may possibly be explained in the following way: the effect of
the external medium for both types of boundary conditions is
to cause an additional, temporally decaying, repulsion be-
tween the plates. This is irrespective of whether the equilib-
rium force between the plates is repulsive or attractive. Thus,
in the case where the equilibrium force is repulsive, we will
clearly have an overshoot effect. This picture is backed up by
the fact that the decay is independent of the distance between
the plates.

B. Effect of temperature changes

The method can also be used to examine the dynamics
resulting from a sudden change in temperature: from, say, T0
where the system is in equilibrium to a temperature T. In this
case, the initial configuration of the field ��x ,0� has the
correlation function

���x,0���x�,0�� = T0�−1�x,x�,l� . �67�

Solving the equation of motion Eq. �25� with this initial con-
dition yields the time-dependent correlation function

C�x,x�,t� = T0 exp�− 2t���−1 + T�1 − exp�− 2t����−1

�68�

and where the second term is exactly the same as that arising
for flat initial conditions. Taking the Laplace transform of
this gives sLC�x ,x� , t��s�=T0��−1�x ,x , l��−�s

−1�x ,x , l���
+T�s

−1�x ,x , l�� and we find

�LFl�s�� =
T0

s

�

�l
ln�Z���� +

T − T0

s

�

�l
ln�Z��s�� , �69�

where we have used the fact that �
�l ln�Z��s�� is independent

of the temperature. For DD boundary conditions, this gives
the limiting behaviors

�Fl�t�� � ��FL�eqT0
−

2A�T − T0�
�8
t�d/2 exp�−

l2

2t
 for

l2

t
� 1

�FL�eqT +
A�T − T0�

d�8
�d/2td/2 for
l2

t
 1.�

�70�

� � �� �� ��
����

�

���

���

���

��	

�

���

���




�
��

�

l = 1
l = 2
l = 4

FIG. 3. �Color online� For Dirichlet-Neumann boundary condi-
tions, the approach to equilibrium for various values of the plate
separation l for d=3. Nonequilibrium Casimir force F, obtained by
the direct numerical inverse Laplace transform of Eq. �57�, plotted
in units of the equilibrium Casimir force �Feq� as a function of time.
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IV. NONEQUILIBRIUM STEADY STATE FORCE—MODEL
A FORCING WITH COLORED NOISE

One can also consider the behavior of the Casimir
force for relaxational dynamics where the deterministic
forcing term is of model A type but where the forcing
noise is colored in time such that ���x , t���x� , t��
=T��x−x��� exp�−��t− t���, i.e.,

��

�t
= −

�H

��
+ � . �71�

Here, T represents an energy scale, � a frequency, and the
resulting steady state is not an equilibrium one. The average
value of the force in the steady-state regime can be computed
using the same formalism above and we find that the corre-
lation function of the field is given by

C�x,x�,�� = T���x,x�,l�−1 − �2��x,x�,l�−1� , �72�

which yields

�Fl���� = −
1

2
� dxdx�

�

�l
��x,x�,l�C�x,x�,��

= T
�

�l
�ln�Z���� − ln�Z��2���� . �73�

Hence again we find that one can compute a force in a
nonequilibrium system from knowledge of static screened
systems �32�. Note that in the limit �→�, we recover the
white-noise equilibrium result of Eq. �7�. Figure 4 shows the
frequency dependence of the nonequilibrium force obtained
from Eq. �73� for a two-plate system with DD boundary
conditions. This result is also that same as that for NN
boundary conditions by the equivalence of the corresponding
static problems. Again, l2 sets a time scale and we see that
for �� l−2, the force, F, tends to the equilibrium white-noise
value, Feq, as expected, while for � l−2, FFeq and as �
→0, F vanishes. The inset to Fig. 4 shows how the force
depends on plate separation for fixed �. Again, equilibrium

behavior is recovered for large l ��� l−2�, while for small
plate separations, the force changes qualitatively scaling as
l−1. We note that the result Eq. �73� agrees with a computa-
tion for the same system where the steady-state Casimir
force was computed using the stress tensor �17�. Figure 5
shows the frequency dependence of the nonequilibrium force
obtained from Eq. �73� for a two-plate system with DN
boundary conditions. One can see that the qualitative behav-
ior is the same as for DD boundary conditions, tending to
zero and the equilibrium white-noise value for small and
large �, respectively. In contrast, the scaling of F for small �
is different. This is most clearly manifested if we look at how
the force depends on the plate separation at fixed � as shown
in the inset to Fig. 5. While equilibrium behavior is recov-
ered for large l ��� l−2�, for small plate separations, the
force changes qualitatively becoming almost insensitive to
the plate separation. This difference is again highlighted in
Fig. 6, which shows an explicit comparison between the
curves in Figs. 4 and 5.

V. PAIRWISE APPROXIMATION FOR SMALL
DEFECT REGIONS

We can also study the force between two small defect
regions in an elastic fluctuating medium using the pairwise
approximation which neglects n-body effects. For instance,
one could have two small volumes V1 and V2 separated by a
distance l in which the field acquires a mass. This will give a
Hamiltonian of the form

H =
1

2
� dx����x��2 +

c1

2
�

V1

dx�2�x� +
c2

2
�

V2

dx�2�x� .

�74�

The pairwise approximation is equivalent to evaluating the
partition function for the Hamiltonian above to second order
in the cumulant expansion. We find that the effective equi-

��
��

��
��

��
�

��
�

��
�

�

���

���

���

���

�

�

	

	
�
�

��
��

��
�

���
�

���
�

���
��

�

�

FIG. 4. �Color online� Steady state pseudo-Casimir force, F,
for colored noise with Dirichlet-Dirichlet boundary conditions in
units of the equilibrium Casimir force �Feq� as a function of � �in
units of l−2� for l=1 and d=3. �Inset� Force per unit area, F �in units
of kBT / l0

3, where l0 is the unit of length�, as a function of plate
separation l �in units of l0� for �=1 �in units of l0

−2� and d=3 �solid
line�. The equilibrium Casimir force �dashed line� is shown for
comparison.
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FIG. 5. �Color online� Steady state pseudo-Casimir force, F, for
colored noise with Dirichlet-Neumann boundary conditions in units
of the equilibrium Casimir force �Feq� as a function of � �in units of
l−2� for l=1 and d=3. �Inset� Force per unit area, F �in units of
kBT / l0

3, where l0 is the unit of length�, for Dirichlet-Neumann
boundary conditions, as a function of plate separation l �in units of
l0� for �=1 �in units of l0

−2� and d=3 �solid line�. The equilibrium
Casimir force �dashed line� is shown for comparison.
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librium potential arising between the two regions, when l is
much greater than their sizes, is

V�l� = −
Tc1c2V1V2

2
G0

2�l� , �75�

where G0=−�−2 is the unscreened Coulomb potential in d
dimensions. Note that in Eq. �75�, it is the function G0 evalu-
ated at l which is squared, not the operator. Now we consider
how this force evolves toward its static value from the initial
conditions where �=0 throughout the system. Applying the
theory developed above, we find that, in this same pairwise
approximation, the time-dependent force between the two
defects is given as the derivative of a time-dependent poten-
tial V�l , t� whose Laplace transform is given by

LV�l,s� = −
Tc1c2V1V2

2s
Gs

2�l� , �76�

where Gs= �−�2+ s
2 �−1. An integral representation can be

found for arbitrary dimension d. However, the result in d
=3 takes the particularly simple form

V�l,t� = −
Tc1c2V1V2

32
2l2 erfc� l
�2t

 , �77�

where erfc is the complementary error function. The effec-
tive interaction between the above types of defects for col-
ored driving noise can also be derived via Eq. �73�. Within
the pairwise approximation, we find that the steady-state
force in this case is obtained from the effective potential

V�l,�� = −
Tc1c2V1V2

2
�G0

2�l� − G2�
2 �l�� �78�

and for d=3, for example, we find

V�l,�� = −
Tc1c2V1V2

32
2l2 �1 − exp�− 2��l�� . �79�

Hence at large separations l2��1, the interaction is the same
as the that for white noise but when l2�1, the effective
potential behaves as −�� / l.

VI. CONCLUSION

In this paper, we have studied how the Casimir interaction
due to a fluctuating scalar field between two plates behaves
as a function of time in the case of relaxational dynamics,
driven by white noise and obeying detailed balance. In par-
ticular, we have shown how it evolves toward its equilibrium
value from an initial state where all the field fluctuations are
suppressed. We have also analyzed the steady-state behavior
of the force induced when the field dynamics does not obey
detailed balance, notably we have analyzed what happens
when the deterministic part of the dynamics is relaxational
but the noise is colored. Previous studies on the dynamical
Casimir effect concentrated on steady-state nonequilibrium
dynamics or dynamics close to equilibrium and considered
Dirichlet boundary conditions assuming that the equilibrium
stress tensor could be applied to compute the force. Our for-
malism marks a major advance that overcomes these restric-
tions by allowing the time-dependent force to be evaluated
unambiguously via an expression for the energy of the field.
The method presented is very general and it would be inter-
esting to analyze the temporal behavior of the Casimir force
for other types of dynamics. We have restricted ourselves to
model A type dynamics as the resulting static results neces-
sary to extract the temporal behavior of the force are known.
The interested reader will see that, for instance, in the case of
model B dynamics, one must know how to compute the Ca-
simir force with a nonlocal Gaussian action. In addition, one
must also determine whether the model B dynamics con-
serves the order parameter within the plates or conserves it
globally. Our method applies to the case where the dynamics
is globally conserved as the operator R is assumed to be
independent of the plate positions. The interested reader can
find a discussion of these points in �33�. Another extension of
the results here would be to actions with higher-order deriva-
tive terms such as the Helfrich action for membrane fluctua-
tions �34�. The main problem here is that the corresponding
static results are very complicated even in the case of planar
geometries �35�. However, the method should be relatively
straightforward to apply in the context of the pairwise ap-
proximation for the interaction between membrane inclu-
sions �36–38� which can be used to analyze the interaction of
defect regions of different elasticity and bending rigidity in
membranes. In addition, the method used here can be applied
to Brownian hydrodynamical dynamics which is the relevant
dynamics for membrane fluctuations �39�.
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pseudo-Casimir force, F, for colored noise with Dirichlet-Neumann
�red solid line� and Dirichlet-Dirichlet �blue dashed line� boundary
conditions in units of the equilibrium Casimir force �Feq� as a func-
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the absolute value of the force per unit area, F �in units of kBT / l0
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as a function of plate separation l �in units of l0� for �=1 �in units
of l0
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APPENDIX: ANALYSIS OF TIME DEPENDENT FORCE
FOR PARALLEL-PLATE GEOMETRY

WITH MODEL A DYNAMICS

Here we carry out an analytical inversion of the Laplace
transforms in Eq. �38� for DD boundary conditions parallel-
plate geometry under model A dynamics. We will use a num-
ber of standard textbook properties of Laplace transforms
which can be found, for instance, in �29�. The computation
for ND computations follows with only minor variations.

Starting with the DD case, using the fact that Fl�0�=0, we
may write Eq. �38� as

�LdFl

dt
�s�� = −

2AT

�2�4
�d−1/2��d − 1

2
� kd−2dk�2k2 + s

	�
n=1

�

exp�− �2ln�2k2 + s� . �A1�

Now, we can use the result

L�exp�− pt�f�t���s� = Lf�s + p� �A2�

to obtain

�LdFl

dt
�s�� = −

2AT

�2�4
�d−1/2��d − 1

2
� kd−2dk

	�
n=1

�

L�exp�− 2k2t�fn�t���s� , �A3�

where the Laplace transform of fn�t� is given by

Lfn�s� = �s exp�− �2ln�s� . �A4�

We now note that

L	erfc� a
�t

�s� =

1

s
exp�− 2a�s� , �A5�

where erfc denotes the complementary error function defined
as

erfc�z� =
2

�

�

z

�

du exp�− u2� . �A6�

Equation �A5� can be written as

− 1

2

�

�a
L	 �

�t
erfc� a

�t

�s� = �sexp�− 2a�s� , �A7�

which thus gives

L−1�sexp�− 2a�s� =
1

�

exp�−

a2

t
	−

1

2t3/2 +
a2

t5/2
 ,

�A8�

which means that

fn�t� =
1

�

exp�−

l2n2

2t
�−

1

2t3/2 +
l2n2

2t5/2 . �A9�

Putting this together and inverting the Laplace transform
yields

� dFl

dt
� = −

AT

�8
�d/2t�d+2�/2 �
n=1

� 	 l2n2

t
− 1
exp�−

l2n2

2t
 ,

�A10�

which gives Eq. �42�. Short time corresponds to the regime
where l2 / t�1 and hence in this regime, the dominant behav-
ior is

� dFl

dt
� = −

ATl2

�8
�d/2t�d+4�/2exp�−
l2

2t
 . �A11�

Thus at very short times, we find that the long-time asymp-
totics can be obtained by using the Poisson summation for-
mula

1 + 2�
n=1

�

exp�−
l2n2

2t
 =

�2
t

l 	1 + 2�
n=1

�

exp�−
2
2n2t

l2 
 .

�A12�

Using this, we find that the time derivative of the average
force can be written as Eq. �43�
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